Application of Artificial Neural Networks (ANNs) in the Gap Filling of Meteorological Time Series

Author:

Coutinho Eluã Ramos1ORCID,Silva Robson Mariano da1,Madeira Jonni Guiller Ferreira2,Coutinho Pollyanna Rodrigues de Oliveira dos Santos1,Boloy Ronney Arismel Mancebo2,Delgado Angel Ramon Sanchez1

Affiliation:

1. Universidade Federal Rural do Rio de Janeiro, Brazil

2. Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Brazil

Abstract

Abstract This study estimates and fills real flaws in a series of meteorological data belonging to four regions of the state of Rio de Janeiro. For this, an Artificial Neural Network (ANN) of Multilayer Perceptron (MLP) was applied. In order to evaluate its adequacy, the monthly variables of maximum air temperature and relative humidity of the period between 05/31/2002 and 12/31/2014 were estimated and compared with the results obtained by Multiple Linear Regression (MLR) and Regions Average (RA), and still faced with the recorded data. To analyze the estimated values and define the best model for filling, statistical techniques were applied such as correlation coefficient (r), Mean Percentage Error (MPE) and others. The results showed a high relation with the recorded data, presenting indexes between 0.94 to 0.98 of (r) for maximum air temperature and between 2.32% to 1.05% of (MPE), maintaining the precision between 97% A 99%. For the relative air humidity, the index (r) with MLP remained between 0.77 and 0.94 and (MPE) between 2.41% and 1.85%, maintaining estimates between 97% and 98%. These results highlight MLP as being effective in estimating and filling missing values.

Publisher

FapUNIFESP (SciELO)

Subject

Atmospheric Science

Reference27 articles.

1. Artificial Neural Network for Precipitation and Water Level Predictions of Bedup River;BUSTAMI R.;International Journal of Computer Science,2007

2. Aplicação de Redes Neurais Artificiais no Preenchimento de Falhas de Precipitação Mensal na Região Serrana do Espírito Santo;CORREIA T.P.;Geociências,2007

3. Utilização de Técnicas de Inteligência Computacional na Predição de Dados Meteorológicos;COUTINHO E.R.;Revista Brasileira de Meteorologia,2016

4. Preenchimento de Falhas de Dados Horários de Precipitação Utilizando Redes Neurais Artificiais;DEPINÉ H.;Revista Brasileira de Recursos Hídricos,2013

5. Comparative Study of Temporal Neural Networks for Short Term Flood Forecasting;DESHMUKH R.P.;International Journal of Computer Applications,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3