Affiliation:
1. Universidade Federal Rural do Rio de Janeiro, Brasil
Abstract
Resumo O presente trabalho apresenta uma abordagem computacional para a predição de um passo à frente em séries de dados meteorológicos pertencentes às regiões de Paty do Alferes e Paracambi, situadas no estado do Rio de Janeiro (RJ). Para tanto, foram utilizados dois modelos de Redes Neurais Artificiais (RNAs): Perceptrons de Múltiplas Camadas (MLP) e Função de Base Radial (RBF). Para confirmar o desempenho dos modelos foi realizada a predição de variáveis horárias e mensais, que foram comparadas com resultados obtidos por modelos de Regressão Linear Múltipla (RLM), confrontadas com os dados registrados pelas estações meteorológicas e analisadas por meio de técnicas estatísticas, apresentando resultados favoráveis entre 91% a 96% de acerto para todos os casos. Além disso, as previsões também demonstraram uma forte correlação linear com os dados registrados, mantendo-se entre 0,61 a 0,94. Como resultado, pode se destacar as RNAs como uma forte ferramenta para predição dos dados meteorológicos analisados.
Reference28 articles.
1. Fast Neural Network Algorithm For Solving Classification Tasks;ALBARAKATI N.;IEEE-Southeastcon Proceedings,2013
2. Estimation Of Global Solar Radiation In Venezuela;ALMOROX J.;Interciencia,2008
3. Redes Neurais Artificiais - Teoria e Aplicações;BRAGA A. P.,2012
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献