A computational modeling method for root canal endoscopy using a specific CBCT filter: A new era in the metaverse of endodontics begins

Author:

Bueno Mike R1ORCID,Estrela Carlos2ORCID

Affiliation:

1. CROIF, Diagnostic Imaging Center, Brazil

2. Federal University of Goiás, Brazil

Abstract

Abstract A contemporary technological revolution has started a new era in the metaverse of Endodontics, a world of virtual operational possibilities that use an exact replica of the natural structures of the maxillofacial complex. This study describes a modeling method for root canal endoscopy using modern cone-beam CT (CBCT) software in a series of clinical cases. The method consists in acquiring thin CBCT slices (0.10mm) in the coronal, sagittal, and axial planes. A specific 3D volume filter, the pulp cavity filter of the e-Vol DX CBCT software, was used to navigate anatomical root canal microstructures, and to scan them using root canal endoscopy. The pulp cavity filter should be set to synchronize CBCT scans from 2D mode - multiplanar reformations (MPR) - to 3D mode - volumetric reconstruction. This filter, when adopting the option of volumetric reconstruction, the developed algorithm leaves the dentin density in transparent mode so that the pulp cavity may be visualized. The algorithm applied performs the suppression (visual) of areas with dentin density. This ensures 3D visualization of the slices and the microanatomy of the root canal, as well as a dynamic navigation throughout the pulp cavity. This computational modeling method adds new resources to Endodontics, which may impact the predictability of root canal treatments positively. The virtual visualization of the internal anatomy of an exact replica of the canal ensures better communications, reliability, and clinical operationalization. Root canal endoscopy using this novel CBCT filter may be used for clinical applications together with innovative digital and virtual-reality resources that will be naturally incorporated into the principles of Endodontics.

Publisher

FapUNIFESP (SciELO)

Subject

General Dentistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3