META-HEURISTIC CLONAL SELECTION ALGORITHM FOR OPTIMIZATION OF FOREST PLANNING

Author:

Araújo Júnior Carlos Alberto1,Mendes João Batista2,Cabacinha Christian Dias1,Assis Adriana Leandra de1,Matos Lisandra Maria Alves1,Leite Helio Garcia3

Affiliation:

1. Universidade Federal de Minas Gerais, Brasil

2. Universidade Estadual de Montes Claros, Brasil

3. Universidade Federal de Viçosa, Brasil

Abstract

ABSTRACT It is important to evaluate the application of new technologies in the field of computational science to forest science. The goal of this study was to test a different kind of metaheuristic, namely Clonal Selection Algorithm, in a forest planning problem. In this problem, the total management area is 4.210 ha that is distributed in 120 stands in ages between 1 and 6 years and site indexes of 22 m to 31 m. The problem was modeled considering the maximization of the net present value subject to the constraints: annual harvested volume between 140,000 m3 and 160,000 m3, harvest ages equal to 5, 6 or 7 years, and the impossibility of division of the management unity at harvest time. Different settings for Clonal Selection Algorithm were evaluated to include: varying selection, cloning, hypermutation, and replacement rates beyond the size of the initial population. A generation value equal to 100 was considered as a stopping criteria and 30 repetitions were performed for each setting. The results were compared to those obtained from integer linear programming and linear programming. The integer linear programming, considered to be the best solution, was obtained after 1 hour of processing. The best setting for Clonal Selection Algorithm was 80 individuals in the initial population and selection. Cloning, hypermutation, and replacement rates equal to 0.20, 0.80, 0.20 and 0.50, respectively, were found. The results obtained by Clonal Selection Algorithm were 1.69% better than the integer linear programming and 4.35% worse than the linear programming. It is possible to conclude that the presented metaheuristic can be used in the resolution of forest scheduling problems.

Publisher

FapUNIFESP (SciELO)

Subject

Forestry

Reference19 articles.

1. Surrogate-assisted clonal selection algorithms for expensive optimization problems;Bernardino HS;Evol Intell,2011

2. Estratégias de regulação de florestas equiâneas com vistas ao manejo da paisagem;Binoti DB,2010

3. A survey on optimization metaheuristics;Boussaid I;Inf Sci,2013

4. Learning and optimization using the clonal selection principle;Castro LN;IEEE Trans Evol Comput,2002

5. Evaluating the neighborhood, hybrid and reversion search techniques of a simulated annealing algorithm in solving forest spatial harvest scheduling problems;Dong L;Silva Fenn,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3