Cluster Analysis in Practice: Dealing with Outliers in Managerial Research

Author:

Lopes Humberto Elias Garcia1ORCID,Gosling Marlusa de Sevilha2ORCID

Affiliation:

1. Pontifícia Universidade Católica de Minas Gerais, Brazil

2. Universidade Federal de Minas Gerais, Brazil

Abstract

ABSTRACT Context: in recent years, cluster analysis has stimulated researchers to explore new ways to understand data behavior. The computational ease of this method and its ability to generate consistent outputs, even in small datasets, explain that to some extent. However, researchers are often mistaken in holding that clustering is a terrain in which anything goes. The literature shows the opposite: they must be careful, especially regarding the effect of outliers on cluster formation. Objective: in this tutorial paper, we contribute to this discussion by presenting four clustering techniques and their respective advantages and disadvantages in the treatment of outliers. Methods: for that, we worked from a managerial dataset and analyzed it using k-means, PAM, DBSCAN, and FCM techniques. Results: our analyzes indicate that researchers have distinct clustering techniques for dealing with outliers accordingly. Conclusion: we concluded that researchers need to have a more diversified repertoire of clustering techniques. After all, this would give them two relevant empirical alternatives: choose the most appropriate technique for their research objectives or adopt a multi-method approach.

Publisher

FapUNIFESP (SciELO)

Reference44 articles.

1. A gentle introduction to Stata;Acock A. C.,2014

2. Identifying and treating outliers in finance;Adams J.;Financial Management,2019

3. Data clustering: Algorithms and applications;Aggarwal C.,2014

4. Economics of strategy;Besanko D.,2016

5. Introduction to deep learning using R: A step-by-step guide to learning and implementing deep learning models using R;Beysolow T.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3