Data-driven versus a domain-led approach to k-means clustering on an open heart failure dataset

Author:

Jasinska-Piadlo A.ORCID,Bond R.ORCID,Biglarbeigi P.ORCID,Brisk R.ORCID,Campbell P.ORCID,Browne F.ORCID,McEneaneny D.ORCID

Abstract

AbstractDomain-driven data mining of health care data poses unique challenges. The aim of this paper is to explore the advantages and the challenges of a ‘domain-led approach’ versus a data-driven approach to a k-means clustering experiment. For the purpose of this experiment, clinical experts in heart failure selected variables to be used during the k-means clustering, whilst during the ‘data-driven approach’ feature selection was performed by applying principal component analysis to the multidimensional dataset. Six out of seven features selected by physicians were amongst 26 features that contributed most to the significant principal components within the k-means algorithm. The data-driven approach showed advantage over the domain-led approach for feature selection by removing the risk of bias that can be introduced by domain experts. Whilst the ‘domain-led approach’ may potentially prohibit knowledge discovery that can be hidden behind variables not routinely taken into consideration as clinically important features, the domain knowledge played an important role at the interpretation stage of the clustering experiment providing insight into the context and preventing far fetched conclusions. The “data-driven approach” was accurate in identifying clusters with distinct features at the physiological level. To promote the domain-led data mining approach, as a result of this experiment we developed a practical checklist guiding how to enable the integration of the domain knowledge into the data mining project.

Funder

Public Health Agency Northern Ireland Health and Social Care Trust

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3