Abstract
The utilization of renewable sources of energy is of significant interest today. This is particularly the case due to the growing interest in addressing global warming, carbon footprint and the associated challenges for the environment. In this context, the enhanced use of solar panels is relevant and timely. With a view to understand and appreciate the fundamentals of the workings of the solar panels and the influence of the outdoor weather-related parameters on their operational characteristics, a study is presented in this paper. A detailed procedure for performance measurement of PV modules in outdoor conditions is reported. Improvement in the precision of outdoor performance measurements of photovoltaic (PV) modules is investigated for a wide range of outdoor conditions. A comparative performance evaluation of the currently available PV modules under the influence of humidity, irradiance and particle radiation is presented. PV parameters show strong dependence on these outdoor conditions. The instability in solar cell modules when reacting with water or under high humidity inhibits the high performance of solar cell modules. Irradiation results depict that the silicon-based PV modules show a decreasing trend of power conversion efficiency with increasing solar irradiance. The efficiency increases with increased solar irradiance for CdTe, GaAs and CIGS solar cells in the irradiance range of 200 to 1000 W•m-2. Tandem and multi-junction solar cells exhibit a high-power conversion efficiency when the solar irradiance increases from 0 - 70 suns. Perovskite solar cells have better particle radiation tolerance than silicon, III-V and CIGS solar cells. The shading problem is discussed briefly for solar cell modules. This study is aimed to provide valuable and comparable information on the degradation performance of solar cells as function of humidity, irradiance and particle radiation, and serves as the basis for future development.
Subject
Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献