Affiliation:
1. National Institute of Solar Energy, Ministry of New and Renewable Energy, Gurgaon 122003, India;
2. TERI University, Plot No. 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India e-mail:
3. National Institute of Solar Energy, Ministry of New and Renewable Energy, Gurgaon 122003, India e-mail:
Abstract
In this paper, a performance evaluation technique using most frequent conditions (MFC) for accurate design of photovoltaic systems, based on energy rating and site-specific standards is reported. Most frequent conditions are estimated for the three different technologies: multicrystalline silicon (mc-Si), amorphous silicon (a-Si), and hetero-junction with intrinsic thin layer (HIT) for the site based on air-mass, module temperatures, incident in-plane irradiance, and power output. The performances are analyzed over a period of 3 years by evaluating changes in the performance ratio, the energy yields, and the percentages of occurrence of data points corresponding to standard test condition (STC), nominal operating cell temperature (NOCT), and MFC. For MFC, performance ratio (PR) values are ranging from 0.70 to 0.83, 0.70 to 0.86, and 0.70 to 0.90 for mc-Si, a-Si, and HIT, respectively. The total energy yield of HIT is the highest followed by a-Si and mc-Si modules for this climatic zone.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献