Activation of mas restores hyperoxia-induced loss of lung epithelial barrier function through inhibition of apoptosis

Author:

Abdul-Hafez Amal,Mohamed Tarek,Uhal Bruce DORCID

Abstract

Background: Neonatal therapy with a high concentration of oxygen (hyperoxia) is a known cause of bronchopulmonary dysplasia (BPD). BPD is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and airways fluid accumulation. Mas receptor is a component of the renin angiotensin system and is the receptor for the protective endogenous peptide angiotensin 1-7. The activation of the Mas receptor was previously shown to have protective pulmonary responses. However, the effect of Mas receptor activation on epithelial barrier integrity has not been tested. Objective: To determine the effects of hyperoxia with or without Mas receptor activation on epithelial cell barrier integrity. Design/Methods: Human epithelial cell line A549 was cultured on transwell polycarbonate porous membrane to confluence and treated with 95% oxygen (hyperoxia) for 72 hours with or without the Mas receptor agonist (AVE0991), or the apoptotic inhibitors Z-VAD-FMK or aurintricarboxylic acid. The cells were then challenged with Rhodamine labeled bovine serum albumin (Rh-BSA) on one side of the membrane. Fluorescent quantitation of Rh-BSA (albumin flux) was performed on the media in the other side of the membrane 3 hours later and was compared with 21% oxygen (Normoxia) control group. A549 cells were also cultured with or without AVE0991 in hyperoxia or normoxia and used for nuclear fragmentation apoptosis assay using propidium iodide staining. Results: Hyperoxia induced an increase in albumin flux that was significantly prevented by AVE0991 treatment and by the apoptosis inhibitors. AVE0991 also significantly decreased the hyperoxia-induced nuclear fragmentation. Conclusion: These results suggest that hyperoxia causes a disruption in the epithelial barrier integrity, and that this disruption is inhibited by the Mas receptor agonist AVE0991 through inhibition of epithelial apoptosis. These results reveal a novel potential drug for BPD and pulmonary edema treatment.

Publisher

MedCrave Group, LLC

Reference50 articles.

1. Deakins KM. Bronchopulmonary dysplasia. Respir Care. 2009;54(9):1252-1262.

2. Bronchopulmonary dysplasia;Northway;N Engl J Med,1967

3. Molecular microbiological characterization of preterm neonates at risk of bronchopulmonary dysplasia;Payne;Pediatr Res,2010

4. Pathology of Bronchopulmonary Dysplasia;Coalson;Semin Perinatol,2006

5. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia;Ratner;Neonatology,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3