Sustainable bioconversion of synthetic plastic wastes to polyhydroxyalkanoate (PHA) bioplastics: recent advances and challenges

Author:

Neifar MohamedORCID,Hammami Khouloud,Souissi Yasmine,Cherif Ameur

Abstract

Millions of tons of chemical plastics are accumulated annually worldwide in terrestrial and marine environments due to inadequate recycling plants and facilities and low circular use. Their continuous accumulation and contamination of soil and water pose a severe threat to the environment and to human, animal and plant health. There is therefore an urgent need to develop effective eco-environmental strategies to overcome the significant environmental impacts of traditional plastic waste management practises (incineration, landfilling, and recycling). In recent years, reports on microbial strains equipped with the potential of degrading plastic materials, which can further be converted into usable products such as PHA bioplastics have sprung up, and these offer a possibility to develop microbial and enzymatic technologies for plastic waste treatment and then progressing plastics circularity. In this chapter, an overview of the reported microbial and enzymatic degradations of petroleum-based synthetic plastics, specifically polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and polyethylene terephthalate, is detailed. Furthermore, the harvesting of depolymerization products to produce new PHA materials with high added industrial value can be considered as an innovative solution, helping to increase synthetic plastic recycling rate and creating new circular economy opportunities. Finally, the challenge of ending plastic pollution is still difficult, but sustainable, renewable, bio-based and completely biodegradable, PHA will hold enormous promise for replacing plastics made from petrochemicals.

Publisher

MedCrave Group Kft.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3