Photocatalytic Degradation of Plastic Waste: A Mini Review

Author:

Lee Qian YingORCID,Li HongORCID

Abstract

Plastic waste becomes an immediate threat to our society with ever-increasing negative impacts on our environment and health by entering our food chain. Sunlight is known to be the natural energy source that degrades plastic waste at a very slow rate. Mimicking the role of sunlight, the photocatalytic degradation process could significantly accelerate the degradation rate thanks to the photocatalyst that drastically facilitates the photochemical reactions involved in the degradation process. This mini review begins with an introduction to the chemical compositions of the common plastic waste. The mechanisms of photodegradation of polymers in general were then revisited. Afterwards, a few photocatalysts were introduced with an emphasis on titanium dioxide (TiO2), which is the most frequently used photocatalyst. The roles of TiO2 photocatalyst in the photodegradation process were then elaborated, followed by the recent advances of photocatalytic degradation of various plastic waste. Lastly, our perspectives on the future research directions of photocatalytic plastic degradation are present. Herein, the importance of catalytic photodegradation is emphasized to inspire research on developing new photocatalysts and new processes for decomposition of plastic waste, and then to increase its recycling rate particularly in the current pandemic with the ever-increasing generation of plastic waste.

Funder

Nanyang Technological University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference77 articles.

1. Chemical recycling of waste plastics for new materials production

2. Plastics—The Facts 2020https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020

3. Plastics Market Size, Share & Trends Report, 2020–2027https://www.grandviewresearch.com/industry-analysis/global-plastics-market

4. Global plastic waste management strategies (Technical and behavioral) during and after COVID-19 pandemic for cleaner global urban life

5. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3