Effect of endocrine disruptor phytoestrogens on the immune system: Present and future

Author:

Csaba György1

Affiliation:

1. 1 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary

Abstract

Endocrine disruptors (EDs) are bound by steroid receptors, have steroid-like effects, and by this, negatively influence hormone-regulated processes. Phytoestrogens, which are consumed in enormously high amount by man, are also EDs; however, in contrast to industrial or communal EDs, in some cases have beneficial effects. As immune cells have steroid (first of all, estrogen) nuclear and plasma membrane receptors, which bind phytostrogens (genistein, daidzein, etc.), the development, lifespan, and function of them are deeply influenced by phytoestrogens. They can provoke perinatal faulty hormonal imprinting with lifelong consequences. However, faulty imprinting can be developed not only perinatally but also in other critical periods of life, as weaning, adolescence, and even in continuously dividing cells (e.g., hemopoietic cells) during the whole life. This means that the phytoestrogens could cause direct – instant or long-lasting – steroid effects and durable imprinting effects. As the effect of hormonal imprinting is epigenetically inherited, the phytoestrogen’s effects appear in the progeny generations, and the generationally repeated disruptor effects will be different from the present ones. This could also be manifested in the amount, type, and appearance of autoimmune diseases. The consumption of soy is enormously growing, and its immune effect is extended. As the immune system influences basic physiological processes, it seems likely that evolutionary alterations will be observed. In this case, some phytoestrogens will be needed for the normal life of man, as it happened in the case of vitamins A and D, which are already life-important exohormones. However, quantitatively or qualitatively enormous amount of phytoestrogens will cause pathological and epigenetically inherited alterations.

Publisher

Akademiai Kiado Zrt.

Subject

General Immunology and Microbiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3