Surficial sediment failures due to the 1929 Grand Banks Earthquake, St Pierre Slope

Author:

Schulten Irena1ORCID,Mosher David C.23,Krastel Sebastian4,Piper David J. W.3,Kienast Markus1

Affiliation:

1. Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada

2. Center for Coastal and Ocean Mapping & Department Earth Sciences, University of New Hampshire, 24 Colovos Road, Durham, NH 03824, USA

3. Natural Resources Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada

4. Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 1, 24148, Kiel, Germany

Abstract

AbstractA Mw 7.2 earthquake centred beneath the upper Laurentian Fan of the SW Newfoundland continental slope triggered a damaging turbidity current and tsunami on 18 November 1929. The turbidity current broke telecommunication cables, and the tsunami killed 28 people and caused major infrastructure damage along the south coast of Newfoundland. Both events are believed to have been derived from sediment mass failure as a result of the earthquake. This study aims to identify the volume and kinematics of the 1929 slope failure in order to understand the geohazard potential of this style of sediment failure. Ultra-high-resolution seismic reflection and multibeam swath bathymetry data are used to determine: (1) the dimension of the failure area; (2) the thickness and volume of failed sediment; (3) fault patterns and displacements; and (4) styles of sediment failure. The total failure area at St Pierre Slope is estimated to be 5200 km2, recognized by escarpments, debris fields and eroded zones on the seafloor. Escarpments are typically 20–100 m high, suggesting failed sediment consisted of this uppermost portion of the sediment column. Landslide deposits consist mostly of debris flows with evidence of translational, retrogressive sliding in deeper water (>1700 m) and evidence of instantaneous sediment failure along fault scarps in shallower water (730–1300 m). Two failure mechanisms therefore seem to be involved in the 1929 submarine landslide: faulting and translation. The main surficial sediment failure concentrated along the deep-water escarpments consisted of widely distributed, translational, retrogressive failure that liquefied to become a debris flow and rapidly evolved into a massive channelized turbidity current. Although most of the surficial failures occurred at these deeper head scarps, their deep-water location and retrogressive nature make them an unlikely main contributor to the tsunami generation. The localized fault scarps in shallower water are a more likely candidate for the generation of the tsunami, but further research is needed in order to address the characteristics of these fault scarps.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3