Canada’s maritime frontier: the science legacy of Canada’s extended continental shelf mapping for UNCLOS

Author:

Mosher David C.1ORCID,Dickson Mary-Lynn1,Shimeld John1,Jackson H. Ruth1,Oakey Gordon N.1,Boggild Kai1,Campbell D. Calvin1,Travaglini Paola2,Rainey Walta-Anne1,Murphy Alain3,Dehler Sonya1,Ells John4

Affiliation:

1. Natural Resources Canada, Geological Survey of Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada

2. Fisheries and Oceans Canada, Canadian Hydrographic Service, Bedford Institute of Oceanography, Dartmouth, NS, Canada

3. GeoLimits Consulting, 41 Condor Rd., Bedford, NS, Canada

4. Fisheries and Oceans Canada, Canadian Hydrographic Service, Ottawa, ON, Canada

Abstract

Canada ratified the United Nations Convention on the Law of the Sea (UNCLOS) in 2003. With that ratification is an obligation to submit data and information to the U.N. pertaining to the limits of the country’s extended continental shelf (ECS); the portion of the juridical continental shelf that extends beyond 200 nautical miles. A team of Canadian scientists, managers, and legal experts that included representation from three Federal Departments (Natural Resources Canada, Fisheries and Oceans Canada, and Global Affairs Canada) with additional support from other departments, spent 13 years compiling and acquiring data to provide the scientific evidence to support delineation of Canada’s seaward most maritime limit. The submission has the potential to provide Canada with 2.4 million km2 of additional submarine landmass in the Atlantic and the Arctic oceans over which Canada exercises sovereign rights for the purpose of exploring and exploiting its natural resources. Specific information such as the tectonic framework of the continental margin, the geomorphology of the margin and in particular the continental slope, the geologic nature of adjoined ridges, rises, and plateaux, and sediment thickness within adjacent basins are examples of fundamental pieces of geoscientific information needed to substantiate Canada’s outermost maritime limits. This paper highlights a number of segments of Canada’s continental margins to showcase this scientific evidence and how it is applied in the UNCLOS context. In doing so, the paper demonstrates the geologic complexity of Canada’s margins as illustrated in scientific publications that have resulted from these new data collections, while at the same time presenting new scientific evidence and interpretations. This collection of data and information provides a wealth of new knowledge in Canada’s offshore regions. The massive data compilation in the Atlantic led to conception of continental margins, in a source-to-sink scenario, as having an equilibrium base level or graded form, comparable to river systems. Departures from this shape relate to the interplay of sedimentary processes and in particular to those processes that do not fit the source-to-sink paradigm. For example, a significant part of the Atlantic margin is shown to be heavily influenced by along-slope geostrophic currents that generated massive contourite drift deposits. These deposits reflect lateral transport of sediment that had a significant impact on the morphology of the margin. The role of mass transport processes in shaping continental margins is also highlighted, and in particular the collapses of entire segments of the margin were observed. The prominent role mass failure processes play in delivering sediment to the adjacent abyssal plain is also critical in the ECS context. These observations challenge the entrenched notion of a continental margin comprising a shelf, slope, and rise and in particular the concept of the “continental rise”. Prior to 2006, regions of the Arctic Ocean seaward of the Canadian landmass had fewer than 5000 km of seismic reflection data. The massive efforts of Arctic coastal States to map their margins for ECS purposes have led to a leap in technological advances to acquire data in ice-covered seas and have led to a wealth of new geoscientific knowledge. Perhaps foremost amongst this knowledge is demonstration that Canada Basin is indeed a fully developed ocean basin, albeit significantly infilled with sediment. Based on this knowledge and identification of related structures, new realistic tectonic scenarios for opening of the Amerasia Basin are proposed that include a significant component of transform or strike-slip motions. With seismic velocity and rock sample information, the continental nature of Alpha and Mendeleev ridges has been substantiated. Even bathymetric data were lacking in the Arctic and new editions of seafloor maps now support grids of 500 m spacing; although some regions remain sparse. Once thought to be relatively stagnant, sedimentary processes such as found in many ocean basins were discovered in the Arctic Ocean. Evidence of geostrophic currents, sediment mass failures, and deep-sea turbidity current channels were found to be ubiquitous, even in the deepest parts of the Arctic’s basins.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Canada;Asia-Pacific Journal of Ocean Law and Policy;2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3