New techniques in sediment core analysis: an introduction

Author:

Rothwell R. Guy1,Rack Frank R.2

Affiliation:

1. National Oceanography Centre, Empress Dock Southampton SO14 3ZH, UK rgr@noc.soton.ac.uk

2. Joint Oceanographic Institutions 1201 New York Avenue, NW, Suite 400, Washington, DC 2005, USA

Abstract

AbstractMarine sediment cores are the fundamental data source for information on seabed character, depositional history and environmental change. They provide raw data for a wide range of research including studies of global climate change, palaeoceanography, slope stability, oil exploration, pollution assessment and control, and sea-floor surveys for laying cables, pipelines and siting of sea-floor structures. During the last three decades, a varied suite of new technologies have been developed to analyse cores, often non-destructively, to produce high-quality, closely spaced, co-located downcore measurements, characterizing sediment physical properties, geochemistry and composition in unprecedented detail. Distributions of a variety of palaeoenvironmentally significant proxies can now be logged at decadal and, in some cases, even annual or subannual scales, allowing detailed insights into the history of climate and associated environmental change. These advances have had a profound effect on many aspects of the Earth Sciences, particularly palaeoceanography. In this paper, we review recent advances in analytical and logging technology, and their application to the analysis of sediment cores. Developments in providing access to core data and associated datasets, and data-mining technology, in order to integrate and interpret new and legacy datasets within the wider context of sea-floor studies, are also discussed. Despite the great advances in this field, however, challenges remain, particularly in the development of standard measurement and calibration methodologies and in the development of data analysis methods. New data visualization tools and techniques need to be developed to optimize the interpretation process and maximize scientific value. Amplified collaboration environments and tools are needed in order to capitalize on our analysis and interpretation capability of large, multi-parameter datasets. Sophisticated, yet simple to use, searchable Internet databases, with universal access and secure long-term funding, and data products resulting in user-defined data-mining query and display, so far pioneered in the USA and Australia, provide robust models for efficient and effective core data stewardship.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference120 articles.

1. Auffret G.A. , ed (1997) in CORSAIRES-IFREMER, Core Logging Workshop (24–26 July 1997, Plouzané, France), Abstract Volume (unpublished).

2. Single-Point Ramped Imaging withT1Enhancement (SPRITE)

3. Sediment dispersal in the Atlantic Ocean: Evaluation by visible light spectra;Balsam;Reviews in Aquatic Science,1991

4. Determining the composition of late Quaternary marine sediments from NUV, VIS, and NIR diffuse reflectance spectra

5. Atlantic sediments: Glacial/interglacial comparisons

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3