The immobilization of gold from gold (III) chloride by a halophilic sulphate-reducing bacterial consortium

Author:

Shuster Jeremiah1,Marsden Sian2,Maclean Lachlan C. W.3,Ball James4,Bolin Trudy5,Southam Gordon6

Affiliation:

1. Department of Earth Sciences, The University of Western Ontario, London, ON, Canada N6A 5B7

2. Department of Geological Sciences, Queen's University, Kingston, ON, Canada K7L 3N6

3. Canadian Light Source Inc., University of Saskatchewan, SK, Canada S7N 0X4

4. Physics Department, John F. Ross Collegiate Vocational Institute, Guelph, ON, Canada N1E 4H1

5. CMC-XOR-Sector 9, Advanced Photon Source, Argonne Laboratory, Argonne, IL 60439, USA

6. School of Earth Sciences, The University of Queensland, St Lucia, QLD 4072, Australia

Abstract

AbstractA consortium containing halophilic, dissimilatory sulphate-reducing bacteria was enriched from Basque Lake #1, located near Ashcroft, British Columbia, Canada to evaluate the role these bacteria have on the immobilization of soluble gold. The consortium immobilized increasing amounts of gold from gold (III) chloride solutions, under saline to hypersaline conditions, over time. Gold (III) chloride was reduced to elemental gold in all experimental systems. Salinity did not affect gold immobilization. Scanning electron microscopy and transmission electron microscopy demonstrated that reduced gold (III) chloride was immobilized as c. 3–10 nm gold colloids and c. 100 nm colloidal aggregates at the fluid–biofilm interface. The precipitation of gold at this organic interface protected cells within the biofilm from the ‘toxic effect’ of ionic gold. Analysis of these experimental systems using X-ray absorption near-edge spectroscopy confirmed that elemental gold with varying colloidal sizes formed within minutes. The immobilization of gold by halophilic sulphate-reducing bacteria highlights a possible role for the biosphere in ‘intercepting’ mobile gold complexes within natural, hydraulic flow paths. Based on the limited toxicity demonstrated in this experimental model, significant concentrations of elemental gold could accumulate over geological time in natural systems where soluble gold concentrations are more dilute and presumably ‘non-toxic’ to the biosphere.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3