Le transport chimique de l'or dans les environnements de surface: formation d'un colloïde et complexation organique

Author:

Bergeron Mario,Harrison Yves

Abstract

Two different categories of experiments were undertaken to determine the significance of humic substances in the chemical transport of gold. The experiments of the first category were designed to study Au(Cl)4 reduction by humic acid at pH 3.5, which is consistent with the formation of this ion in sulfide oxidation zones. These experiments were repeated with denaturated humic acid (obtained by heating in an acid medium). The results show that Au(Cl)4 is reduced by humic acid to an unstable colloid, but not by denaturated humic acid. The purpose of the second category of experiments was to study gold solubility in various organic materials: humic acid, fulvic acid, and potassium humate. Solutions of these substances and demineralized water (the latter served as the reference point) were placed in contact with metallic gold for 1 month at pH 7, the common pH in surface environments. The data indicate an increase in gold solubility according to the following order: humic acid < fulvic acid < potassium humate. A two-step gold chemical-transport mechanism for surface environments is proposed on the basis of our results. In the first step, unstable colloidal gold is formed from inorganic complexes produced in the sulfide oxidation zones (zones with acidic pH). After full oxidization, the pH moves to the normal value, causing the dissociation of functional groups in humic substances. In the second step, these humic substances, through the dissociated functional groups, could form organo-metallic complexes with gold, ensuring gold dispersion in surface environments. [Journal Translation]

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3