Structural model creation: the impact of data type and creative space on geological reasoning and interpretation

Author:

Bond C. E.1,Johnson G.2,Ellis J. F.3

Affiliation:

1. Geology and Petroleum Geology, University of Aberdeen, School of Geosciences, King College, Aberdeen AB24 3UE, UK

2. School of Geosciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK

3. Midland Valley Exploration, 144 West George Street, Glasgow G2 2HG, UK

Abstract

AbstractInterpretation of sparse or incomplete datasets is a fundamental part of geology, particularly when building models of the subsurface. Available geological data are often remotely sensed (seismic data) or very limited in spatial extent (borehole data). Understanding how different datasets are interpreted and what makes an interpreter effective is critical if accurate geological models are to be created. A comparison of the interpretation outcome and techniques used by two cohorts interpreting different geological datasets of the same model, an inversion structure, was made. The first cohort consists of interpreters of the synthetic seismic image data in Bond et al. (‘What do you think this is?: “Conceptual uncertainty” in geoscience interpretation’, GSA Today, 2007, 17, 4–10, http://dx.doi.org/10.1130/GSAT01711A.1); the second cohort is new and interpreted borehole data. The outcomes of the borehole interpretation dataset support earlier findings that technique use, specifically evidence of geological evolution thought processes, results in more effective interpretation. The results also show that the borehole interpreters were more effective at arriving at the correct interpretation. Analysis of their final interpretations in the context of psychological and medical image analysis research suggests that the clarity of the original dataset, the amount of noise and white space may play a role in interpretation outcome, through enforced geological reasoning during data interpretation.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3