Introducing conceptual geological information into Bayesian tomographic imaging

Author:

Bloem Hugo1ORCID,Curtis Andrew1,Tetzlaff Daniel2

Affiliation:

1. School of GeoSciences, University of Edinburgh Edinburgh UK

2. Westchase Software Corporation Houston Texas USA

Abstract

AbstractGeological process models typically simulate a range of dynamic processes to evolve a base topography into a final two‐dimensional cross section or three‐dimensional geological scenario. In principle, process parameters may be updated to better align with observed geophysical or geological data. However, it is hard to find any process model realisations that fit all observations if data sets are complex and sparse in space or time because the simulations typically depend highly non‐linearly on base topography and dynamic parameters. As an alternative, geophysical probabilistic tomographic methods may be used to estimate the family of models of a target subsurface structure that are consistent both with information obtained from previous experiments and with new data (the Bayesian posterior probability distribution). However, this family seldom embodies geologically reasonable images. Here we show that the posterior distribution of tomographic images obtained from travel time data can be fully geological by injecting geological prior information into Bayesian inference and that we can do this near‐instantaneously by using trained mixture density networks (MDNs). We invoke two geological concepts as prior information about the possible depositional environment of an imaged target structure: a braided river system and a set of marine parasequences. Each concept is parameterised by the latent parameters of a generative adversarial network. Data from a target structure can then be used to infer the family of compatible latent parameter values using either geological concept using MDNs. Our near‐instantaneous MDN solutions closely resemble those found using relatively expensive Monte Carlo methods. We show that while the use of incorrect geological conceptual models provides significantly less accurate results, a classifier neural network can infer which geological conceptual model is most consistent with the data. It is thus demonstrated that even apparently barely related geophysical data may contain information about abstract geological concepts, and that geological conceptual models are key to creating reasonable images from geophysical data.

Publisher

Wiley

Subject

Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refining tomography with generative neural networks trained from geodynamics;Geophysical Journal International;2024-07-08

2. Bayesian geochemical correlation and tomography;Scientific Reports;2024-04-23

3. Bayesian variational time-lapse full waveform inversion;Geophysical Journal International;2024-04-05

4. Bayesian Inversion, Uncertainty Analysis and Interrogation Using Boosting Variational Inference;Journal of Geophysical Research: Solid Earth;2024-01

5. Sparse Variational Bayesian Inversion for Subsurface Seismic Imaging;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3