Upscaling of outcrop information for improved reservoir modelling – exemplified by a case study on chalk

Author:

Qu Dongfang1ORCID,Frykman Peter2ORCID,Stemmerik Lars2,Mosegaard Klaus3ORCID,Nielsen Lars1

Affiliation:

1. Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark

2. Geological Survey of Denmark and Greenland – GEUS, Øster Voldgade 10, 1350 Copenhagen, Denmark

3. Niels Bohr Institute, University of Copenhagen, Tagensvej 16, 2200 Copenhagen, Denmark

Abstract

Outcrops are valuable for analogous subsurface reservoirs in supplying knowledge of fine-scale spatial heterogeneity pattern and stratification types, which are difficult to obtain from subsurface reservoir cores, well logs or seismic data. For petrophysical properties in a domain where the variations are relatively continuous and not dominated by abrupt contrasts, the spatial heterogeneity pattern can be characterized by a semivariogram model. The outcrop information therefore has the potential to constrain the semivariogram for subsurface reservoir modelling, even though it represents different locations and depths, and the petrophysical properties may differ in magnitude or variance. However, the use of outcrop-derived spatial correlation information for petrophysical property modelling in practice has been challenged by the scale difference between the small support volume of the property measurements from outcrops and the typically much larger grid cells used in reservoir models. With an example of modelling the porosity of an outcrop chalk unit in eastern Denmark, this paper illustrates how the fine-scale spatial correlation information obtained from the sampling of outcrops can be transferred to coarser-scale models of analogue rocks. The workflow can be applied to subsurface reservoirs and ultimately improves the representation of geological patterns in reservoir models.

Publisher

Geological Society of London

Subject

Earth and Planetary Sciences (miscellaneous),Economic Geology,Geochemistry and Petrology,Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3