Ranking and selecting fault models using flow-indicator fault properties and simple streamline simulations

Author:

Wilson Paul1,Smith Stewart1,Povey Danny1,Harris Simon2

Affiliation:

1. Schlumberger Oilfield UK plc, 13th Floor Pinnacle, 67 Albion Street, Leeds LS1 5AA, UK

2. Schlumberger Oilfield UK plc, Abingdon Technology Centre, 55 Western Avenue, Milton, Abingdon OX14 4RU, UK

Abstract

Fault zones in porous sandstones are commonly divided into two parts: a fault core and a damage zone. Both fault-zone elements could influence subsurface fluid flow and should be incorporated in a geologically realistic model. The fault core can be implemented in the model as a transmissibility multiplier (TM), while the damage zone can be implemented by modifying the grid permeability in the cells adjacent to the model faults. Each of the input parameters used in calculating the TM and damage-zone permeability modification is subject to geological uncertainty. Here an iterative workflow is employed to define probability distribution functions for each of the input parameters, with the result being many fault-model realizations. Here two methods are examined for ranking and selecting the fault-model realizations for further analysis: (i) calculating the flow-indicator fault properties (effective cross-fault transmissibility and effective cross-fault permeability) from the static model; and (ii) employing a simplified flow-based connectivity calculation, returning dynamic measures of model connectivity. The aims are to outline the methodology and workflow used, evaluate the impact of the different input parameters on the results, and examine the results of the static and dynamic approaches to understand how the ranking and selection of models compares between the two.Our results are dependent on the structural model. In a strongly compartmentalized model based on the Gullfaks Field, North Sea, fluid-flow-indicator fault properties are weakly correlated with measures of dynamic behaviour. In particular, models with low fault transmissibility show a much greater range of dynamic behaviour, and are less predictable, than models with high fault transmissibility. In a weakly compartmentalized model with strongly channelized fluvial facies based on the Whitley Bay area in NE England, there was a strong correlation between flow-indicator fault properties and measures of dynamic behaviour. We ascribe these results to the greater complexity of flow paths expected when a highly compartmentalized model contains faults that are likely to be baffles to cross-fault flow.Thematic collection: This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019

Publisher

Geological Society of London

Subject

Earth and Planetary Sciences (miscellaneous),Economic Geology,Geochemistry and Petrology,Geology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3