A Data Science Approach to Uncertainty Evaluation in Fault-Seal Analysis for Exploration Applications in Siliciclastic Reservoirs

Author:

Wilson Paul1ORCID

Affiliation:

1. SLB

Abstract

Summary Fault-seal analysis is used to understand the risk of hydrocarbons leaking out of a trap across bounding faults. There is a broad standard industry workflow for this analysis in clastic rocks, involving building a structural framework of the key seismic horizons and faults, estimating the clay content of the stratigraphy, predicting fault clay content using an algorithm such as shale gouge ratio (SGR), converting the predicted clay content to capillary threshold pressure, and calculating sealing capacity using the reservoir fluid properties. The inputs to the analysis are typically subject to considerable uncertainty that is difficult to understand and evaluate. One approach is to create “end member” scenarios to evaluate the impact of the key uncertainties, but this gives an incomplete picture and only a limited number of scenarios can be run and analyzed in the time typically available. The approach outlined here instead uses an automated workflow that runs hundreds of scenarios with stochastically varying input parameters. Data-science techniques combining domain expertise, mathematics and statistics, and computer coding are used to analyze and build models of the results. The advantages of the approach over a traditional fault-seal analysis workflow are that a wider range of input uncertainties can be considered, and that the results of a large number of realizations can be consolidated and visualized in ways that are specific to the problem being addressed and useful to the geologist undertaking the analysis. A key advantage is that the uncertainty inherent in this type of analysis can be explicitly incorporated, and the impact of the uncertainty clearly understood and communicated to decision-makers. Similar techniques could be applied to other geological analyses where uncertainty is an issue.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3