Tephra fallout in the eruption of Soufrière Hills Volcano, Montserrat

Author:

Bonadonna C.1,Mayberry G. C.2,Calder E. S.1,Sparks R. S. J.1,Choux C.3,Jackson P.4,Lejeune A. M.1,Loughlin S. C.5,Norton G. E.6,Rose W. I.2,Ryan G.7,Young S. R.4

Affiliation:

1. Department of Earth Sciences, University of BristolBristol BS8 1RJ, UK (steve.sparks@bristol.ac.uk)

2. Department of Geological Engineering and Sciences, Michigan Technological UniversityHoughton MI 49931, USA

3. Laboratoire Magmas et Volcans, Université Blaise Pascal et CNRS63038 Clermont Ferrand, France

4. Montserrat Volcano ObservatoryMongo Hill, Montserrat, West Indies

5. British Geological SurveyEdinburgh EH9 3LA, UK

6. British Geological SurveyKeyworth, Nottingham, UK

7. Institute of Environmental and Natural Sciences, Lancaster UniversityLancaster LA1 4YQ, UK

Abstract

AbstractFour mechanisms caused tephra fallout at Soufrière Hills Volcano, Montserrat, during the 1995-1999 period: explosive activity (mainly of Vulcanian type), dome collapses, ash-venting and phreatic explosions. The first two mechanisms contributed most of the tephra-fallout deposits (minimum total dense-rock equivalent volume of 23 x 106 m3), which vary from massive to layered and represent the amalgamation of the deposits from a large numbers of events. The volume of co-pyroclastic-flow fallout tephra is in the range 4-16° of the associated pyroclastic flow deposits. Dome-collapse fallout tephra is characterized by ash particles generated by fragmentation in the pyroclastic flows and by elutriation of fines. Vulcanian fallout tephra is coarser grained, as it is formed by magma fragmentation in the conduit and by elutriation from the fountain-collapse flows and initial surges. Vulcanian fallout tephra is typically polymodal, whereas dome-collapse fallout tephra is predominantly unimodal. Polymodality is attributed to: overlapping of fallout tephra of different types, premature fallout of fine particles, multiple tephra-fallout sources, and differences in density and grain-size distribution of different components. During both dome collapses and explosions, ash fell as aggregates of various sizes and types. Accretionary lapilli grain size is independent of their diameter and is characterized by multiple subpopulations with a main mode at 5ø. Satellite data indicate that very fine ash can stay in a volcanic cloud for several hours and show that exponential thinning rates observed in proximal areas cannot apply in distal areas.

Publisher

Geological Society of London

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3