Affiliation:
1. Department of Earth and Planetary Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA (e-mail: kmcooper@ucdavis.edu)
Abstract
AbstractThe dynamic processes operating within crustal magma reservoirs control many aspects of the chemical composition of erupted magmas, and crystals in volcanic rocks provide a temporally constrained archive of these changing environments. In this review, I compile 238U–230Th ages of accessory phases and 238U–230Th–226Ra ages of bulk mineral separates of major phases. These data document that crystals in individual samples can have ages spanning most of the history of a volcanic centre. Age populations for accessory phases show protracted pre-eruptive crystal residence times but few crystals predate magmatic activity at a given centre. These data have been interpreted in the context of residence times of the host magmas or timescales of the storage of crystals within a largely crystalline portion of the reservoir system. In contrast, less than half of the bulk separate 238U–230Th–226Ra ages for major phases are more than 10 kyr older than the eruption. Many of these apparently conflicting observations of ages of major and accessory phases can be reconciled within the context of a model where a crystal mush was remobilized during processes leading to eruption. Overall, the compiled data show that crystals contain rich archives of magmatic processes in crustal reservoirs, especially when combined with other crystal-scale geochemical data.Supplementary material:Compilation of U–Th–Pb ages of accessory phases and associated references are available at www.geolsoc.org.uk/SUP18820
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献