Zircon Constraints on the Eruptive Sequence and Magma Evolution of Rhyolites at South Sister Volcano, Oregon

Author:

Dechert Annika E.1ORCID,Andersen Nathan L.2,Dufek Josef1ORCID,Jilly Christine E.3ORCID

Affiliation:

1. Department of Earth Sciences University of Oregon Eugene OR USA

2. U.S. Geological Survey Cascades Volcano Observatory Vancouver WA USA

3. Department of Earth & Planetary Sciences Stanford University Stanford CA USA

Abstract

AbstractWe present 230Th‐238U crystallization ages and trace element compositions for zircons spanning the late Pleistocene to Holocene rhyolite eruptive record at South Sister volcano in the central Oregon Cascade Range. Most zircon ages are between 100 and 20 ka, with very few in secular equilibrium (>350 ka). The weighted mean of zircon ages for the two oldest South Sister rhyolites, 31.5 ± 2.1 and 39.1 ± 2.4 ka, are significantly younger than the associated 40Ar/39Ar ages, 47.4 ± 9.7 and 51.4 ± 9.7 ka. We propose that these 40Ar/39Ar dates, performed on plagioclase separates, are compromised by a subtle amount of excess Ar and therefore the younger weighted mean zircon ages yield more reliable eruption ages. These results imply that the interval of rhyolite eruption at South Sister during the late Pleistocene was both shorter and more productive than previously thought and that eruption at South Sister initiated after Middle Sister. Compositionally, zircons from the Pleistocene rhyolites are broadly similar and show down‐temperature zircon and plagioclase crystallization trends. However, we argue that destabilized amphibole and titanite in a common mush also exert leverage on the Pleistocene zircon trace element compositions. Divergence in the Eu/Eu* ratio between the Pleistocene and Holocene lavas implies chemically distinct magma reservoirs originating from the Pleistocene rhyolite eruptive sequence and the Holocene eruptive sequence. This work suggests a higher flux of rhyolite volcanism than previously thought and characterizes magmatic storage distinctions between the Pleistocene and Holocene rhyolites, aiding in the assessment of future eruptive hazards at South Sister volcano.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3