Shear margin moraine, mass transport deposits and soft beds revealed by high-resolution P-Cable three-dimensional seismic data in the Hoop area, Barents Sea

Author:

Bellwald Benjamin1,Planke Sverre12ORCID

Affiliation:

1. Volcanic Basin Petroleum Research AS, Oslo Science Park, Gaustadalléen 21, N-0349 Oslo, Norway

2. Centre for Earth Evolution and Dynamics, University of Oslo, Geologibygningen, Sem Sælands vei 1, N-0371 Oslo, Norway

Abstract

AbstractHigh-resolution seismic data are powerful tools that can help the offshore industries to better understand the nature of the shallow subsurface and plan the development of vulnerable infrastructure. Submarine mass movements and shallow gas are among the most significant geohazards in petroleum prospecting areas. A variety of high-resolution geophysical datasets collected in the Barents Sea have significantly improved our knowledge of the shallow subsurface in recent decades. Here we use a c. 200 km2 high-resolution P-Cable 3D seismic cube from the Hoop area, SW Barents Sea, to study a 20–65 m thick glacial package between the seabed and the Upper Regional Unconformity (URU) horizons. Intra-glacial reflections, not visible in conventional seismic reflection data, are well imaged. These reflections have been mapped in detail to better understand the glacial deposits and to assess their impact on seabed installations. A shear margin moraine, mass transport deposits and thin soft beds are examples of distinct units only resolvable in the P-Cable 3D seismic data. The top of the shear margin moraine is characterized by a positive amplitude reflection incised by glacial ploughmarks. Sedimentary slide wedges and shear bands are characteristic sedimentary features of the moraine. A soft reflection locally draping the URU is interpreted as a coarser grained turbidite bed related to slope failure along the moraine. The bed is possibly filled with gas. Alternatively, this negative amplitude reflection represents a thin, soft bed above the URU. This study shows that P-Cable 3D data can be used successfully to identify and map the external and internal structures of ice stream shear margin moraines and that this knowledge is useful for site-survey investigations.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3