Towards prediction of saturated-zone pollutant movement in groundwaters in fractured permeable-matrix aquifers: the case of the UK Permo-Triassic sandstones

Author:

Tellam John H.1,Barker Ronald D.1

Affiliation:

1. Hydrogeology Research Group, Earth Sciences, School of Geography, Earth and Environmental Sciences, Birmingham University Birmingham B15 2TT, UK

Abstract

AbstractThe UK on-shore Permo-Triassic sandstones are fluvial and aeolian red beds showing a nested cyclic architecture on scales from millimetres to 100s of metres. They are typical of many continental sandstone sequences throughout the world. Groundwater flows through both matrix and fractures, with natural flow rates generally of less than 200 m year−1. At less than 30 m horizontal distances, below important minimum representative volumes for both matrix and fracture network permeability, breakthroughs are likely to be multimodal, especially close to wells, with proportionately large apparent dispersivities. ‘Antifractures’ — discontinuities with permeability much less than that of the host rock — may have a dominating effect. Where present, low-permeability matrix (e.g. mudstones) will significantly affect vertical flow, but will rarely prevent eventual breakthrough. Quantitative prediction of breakthrough is associated with large uncertainty. At scales of 30 to a few 100s of metres, multimodal breakthroughs from a single source become less common, although very rapid fracture flow has been recorded. At distances of hundreds of metres to a few kilometres, there is evidence that breakthroughs are unimodal, and may be more immediately amenable to quantitative prediction, even in some cases for reacting solutes. At this and greater scales, regional fault structures (both slip surfaces and granulation seams) can have major effects on sub-horizontal solute movement, and mudstones and cemented units will discourage vertical penetration. The aquifer has limited oxidizing capacity despite the almost ubiquitous presence of oxides, limited reductive capacity and limited organic sorption capacity. It has a moderate cation-exchange capacity, and frequently contains carbonate. Mn oxides are important for sorption and oxidation, but are present in limited quantity. Relationships between hydraulic and chemical properties are largely unknown. ‘Hard’ evidence for the solute transport conceptual model presented above is relatively limited. To be able to predict to a reasonably estimated degree of uncertainty requires knowledge of: the geological, and thence the hydraulic and geo-chemical, structure of the complex sandstone architecture (including the correlations between these properties); the development of suitable investigation techniques (especially geophysical) for mapping the structures; and the development of modelling tools incorporating matrix, fractures, ‘antimatrix’ and antifracture elements, each with associated hydraulic and possibly geochemical properties. In common with solute movement studies in most aquifer types, much more geological characterization needs to be undertaken. Although new investigation and modelling tools are being developed specifically for (shallow) hydrogeological applications with some considerable success, much greater advantage could be taken of importing techniques from other disciplines, and in particular from oil exploration and development.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference315 articles.

1. Adey J. (2004) Development of the Partition Coefficient (K d) Test Method for Use in Environmental Risk Assessments, (UK) Environment Agency R&D Technical Report, P1–500/4/TR.

2. A hierarchical process-approach to reservoir heterogeneity: Examples from outcrop analogues;Aigner;Bulletin du Centre de Recherches Elf Exploration Production,1999

3. Outcrop gamma-ray logging and its applications: examples from the German Triassic

4. Towards understanding the Dumfries Basin aquifer, SW Scotland;Akhurst,2006

5. The role of low-permability rocks in regional flow;Alexander,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3