Seismic geomorphology of the Chandeleur submarine landslide in the northern Gulf of Mexico

Author:

Martinez Gabriel O.1ORCID,Sawyer Derek E.1ORCID,Portnov Alexey2ORCID

Affiliation:

1. School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA

2. Institute for Geophysics, University of Texas at Austin, TX 78758, USA

Abstract

Abstract The Chandeleur Submarine Landslide Complex occurs on the upper Mississippi Fan of the Gulf of Mexico in approximately 1100 m of water, 200 km SE of New Orleans, Louisiana. This part of the Mississippi Fan received high sedimentation throughout the Pleistocene, causing high pore fluid pressure and abundant slope failures, though few as large as the Chandeleur. Given its large size, proximity to major coastal cities and seafloor infrastructures, we examine the Chandeleur Slide to understand what led to the initial slope failure and decipher its post-failure transport behaviour using 2D and 3D multichannel seismic surveys, high-resolution bathymetric data, and well logs. We find a large sediment mass with a translational-rotational behaviour that was displaced to the south/SE up to 40 km from the source area. The Chandeleur Slide includes extensional faulting in the headscarp area and compressional structures in the toe where confined by a natural ramp-like structure. Beneath the Chandeleur Slide, we identify a regional sand-rich unit (called the Blue Unit) that is known to be overpressured. Beneath the Blue Unit we observe an upward-migrating salt diapir. We suggest one possible scenario for the origin of the Chandeleur Slide is the combined effects of an upward-migrating salt diapir impinging on an already overpressured Blue Unit, leading to the initial failure. The initial failure was followed by retrogressive headwall retreat northward, which created the prominent scarp on the seafloor. In total, the Chandeleur Slide complex covers an area of about 1000 km 2 and contains about 300 km 3 of sediment.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3