Petrogenesis and U–Pb zircon dating of the Chaitma Alkaline Complex from the southern margin of the Central Indian Tectonic Zone: geodynamic implications

Author:

Mahapatro Satya Narayana1ORCID,Renjith M. L.2,Martha Ranjit Kumar1,Patel Rakesh Kumar1,Upadhyay Dewashish3,Sarma D. Srinivasa4

Affiliation:

1. Geological Survey of India, Raipur 492010, India

2. Geological Survey of India, Hyderabad 500068, India

3. Indian Institute of Technology, Kharagpur 721302, India

4. CSIR–National Geophysical Research Institute, Hyderabad 500007, India

Abstract

AbstractIn this study, we constrain the petrogenesis and U–Pb zircon age of a newly discovered alkaline complex, christened the Chaitma Alkaline Complex at the southern margin of the Central Indian Tectonic Zone in central India. The Chaitma Alkaline Complex comprises syenites and gabbros, emplaced coevally, and show features consistent with magma mixing. Geochemically, syenites are potassic–ultrapotassic (K2O/Na2O: 0.79–3.42), and contain high Ba (c. 800–2700 ppm) and Sr (c. 1400–3200 ppm). They show enrichment of the light rare earth elements (LREEs) relative to the heavy rare earth elements (HREEs) (La/Yb: 32–103) and do not display any Eu anomaly. Based on their geochemical signatures, such as low MgO (<0.87 wt%), Ni (8–16 ppm) and Cr (7–44 ppm) contents and prominent Zr–Hf negative anomaly, the syenites are inferred to have been derived by partial melting of a carbonated/metasomatized thickened lower crustal source. The coeval gabbros are undersaturated in silica (41–44 wt%), with relatively high total alkalis (Na2O + K2O: 3.7–5.1 wt%), Fe2O3 (17–19 wt%), P2O5 (3.1–4.9 wt%), Sr (1600–3400 ppm) and Ba (300–3500 ppm) contents. These have low MgO (<4.8 wt%), Ni (13–30 ppm) and Cr (18–84 ppm). Their chemistry is interpreted to be the result of interaction with the syenitic magma. These geochemical characters along with the high LREE/HREE ratio, negative trough in Nb–Ta, Zr–Hf, Ti, Sr and Rb, and positive spike of Pb in a multielement diagram, and enrichment of LILEs over HFSEs indicate their derivation from a metasomatized subduction-modified garnet–peridotite mantle source. Our study indicates that syenites and gabbros of the Chaitma Alkaline Complex were formed from genetically unrelated parental magmas derived from distinct sources. U–Pb dating of zircon yielded a magmatic emplacement age of 1626 ± 15 Ma for the syenites. The Chaitma Alkaline Complex was presumably formed during a short period of crustal extension in the midst of a protracted period of continent–continent collision and granulite-grade metamorphism (c. 1.71–1.58 Ga) at the southern margin of the Central Indian Tectonic Zone.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference102 articles.

1. Proterozoic rock suites along South Purulia Shear Zone, Eastern India: evidence of rift related setting;Journal of the Geological Society of India,2006

2. Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids

3. Generation of sodium-rich magmas from newly underplated basaltic crust

4. Episodic alkaline igneous activity across Africa: implications for the causes of continental break-up

5. Dry peralkaline felsic liquids and carbon dioxide flux through the Kenya rift zone;Geochemical Society, London, Special Publications,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3