Mineralogy and Geochemistry of Nepheline Syenite From the Bang Phuc Massif of the Alkaline Cho Don Complex in North-Eastern Vietnam—Implications for Magma Evolution and Fluid–Rock Interactions

Author:

Dumańska-Słowik M1,Powolny T1,Nguyen Khac G2

Affiliation:

1. AGH University of Krakow Faculty of Geology, Geophysics, and Environmental Protection, , 30 Mickiewicz Av, Krakow 30-059, Poland

2. Hanoi University of Mining and Geology Faculty of Geosciences and Geoengineering, , 18 Pho Vien Street, Bac Tu Liem District, Hanoi, Vietnam

Abstract

Abstract The alkaline Cho Don complex in NE Vietnam comprises several mafic-felsic suites related to the widespread magmatism developed during the early Permian–late Triassic. The contribution explores the petrogenesis of nepheline syenite from the Bang Phuc massif and its petrogenetic relationship with cogenetic scapolite-rich gabbro. The nepheline syenite formed through fractional crystallization of pristine mantle-derived basaltic melt modified by subduction-related components (chiefly sediment-derived melts), as shown by, e.g. low Ba/Th and high Th/Nb ratios of the rocks. The transition from gabbro to syenite follows a within-plate enrichment trend (e.g. increasing Ta/Yb, Nb/Yb, and Th/Yb ratios) that might reflect switch from post-orogenic to intra-plate regimes, accompanied by subduction–collision–extension events related to the Indosinian Orogeny. Furthermore, magma evolution involved the progressive contribution of asthenospheric-derived melts that resulted in the appearance of OIB-like signatures (e.g. high Nb/La ratios) in the nepheline syenite. Fractional crystallization of fluorapatite and mafic phases, as well as assimilation of carbonate wall rocks ultimately led to the decrease of LREE contents and/or modification of Zr/Hf ratios. Magmatic phases of the nepheline syenite include nepheline, sodalite, oligoclase, orthoclase, and annite, as well as accessory fluorapatite, fluorite, and minor amounts of zircon and metamict allanite-Ce. The nepheline equilibrated at temperatures ranging between 850°C and 700°C, which reflects protracted residence at a higher temperature. Later, it has been locally altered to cancrinite, dawsonite, and natrolite via CO2- and alkali-rich fluid influx. The fluid–rock interactions were also manifested by the presence of chessboard-twinned albite and coarsening of braid-perthite into patch-perthite, as well as recrystallization of primary orthoclase into microcline. The orthoclase→microcline conversion, albeit fairly indiscrete under a polarizing microscope and confirmed by Raman micro-spectroscopy, is followed by the change of cathodoluminescence colours, i.e. from light-blue (activated by Ti4+ and/or Al-O—Al centres) in orthoclase towards brownish and/or greenish (activated by Mn2+ and structural defects) in microcline.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3