Thinking platforms for smarter urban water systems: fusing technical and socio-economic models and tools

Author:

Makropoulos Christos1

Affiliation:

1. School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 5, Athens, Greece cmakro@mail.ntua.gr

Abstract

AbstractEngineering is currently expanding its conceptual boundaries by accepting the challenge of interdisciplinarity, while often adopting social and biological concepts in developing tools (e.g. evolutionary optimization or interactive autonomous agents) or even world views (e.g. co-evolution, resilience, adaptation). The emerging socio-technical knowledge domain is still very much restricted by partial knowledge associated with the lack of long-term transdisciplinary research effort and the unavailability of robust, integrated tools able to cover both the technical and the socio-economic domains and to act as ‘thinking platforms’ for long-term scenario planning and strategic decision making under (high-order) uncertainties. Here we present an example of a toolkit that attempts to bridge this gap focusing on urban water (UW) systems and their management. The toolkit consists of three tools: the UW Optioneering Tool (UWOT); the UW Agent Based Modelling Platform (UWABM); and the UW System Dynamic Environment (UWSDE). The tools are briefly presented and discussed, focusing on interactions and data flows between them and their typical results are illustrated through a case study example. A further tool (a Cellular Automata Based Urban Growth Model) is currently under development and an early coupling with the other tools is also discussed. It is argued that this type of extended model fusion, beyond what has traditionally been thought of as ‘integrated modelling’ in the engineering domain is a new frontier in the understanding of environmental systems and presents a promising, emerging field in modelling interactions between our societies and cities, and our environment.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference55 articles.

1. The democratisation of decision-making processes in the water sector I;Abbott;Journal of Hydroinformatics,2001

2. Diameter of the World-Wide Web

3. An overview of model integration for environmental applications—components, frameworks and semantics;Argent;Environmental Modelling & Software,2004

4. ASCE (2012) The Failure to Act: The Economic Impact of Current Investment Trends in Water and Waste Treatment Infrastructure (American Society of Civil Engineers, Reston, VA).

5. Statistical mechanics of opinion formation and collective behaviour: micro-sociology;Bahr;The Journal of Mathematical Sociology,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3