Stress-Testing Framework for Urban Water Systems: A Source to Tap Approach for Stochastic Resilience Assessment

Author:

Nikolopoulos DionysiosORCID,Kossieris Panagiotis,Tsoukalas IoannisORCID,Makropoulos Christos

Abstract

Optimizing the design and operation of an Urban Water System (UWS) faces significant challenges over its lifespan to account for the uncertainties of important stressors that arise from population growth rates, climate change factors, or shifting demand patterns. The analysis of a UWS’s performance across interdependent subsystems benefits from a multi-model approach where different designs are tested against a variety of metrics and in different times scales for each subsystem. In this work, we present a stress-testing framework for UWSs that assesses the system’s resilience, i.e., the degree to which a UWS continues to perform under progressively increasing disturbance (deviation from normal operating conditions). The framework is underpinned by a modeling chain that covers the entire water cycle, in a source-to-tap manner, coupling a water resources management model, a hydraulic water distribution model, and a water demand generation model. An additional stochastic simulation module enables the representation and modeling of uncertainty throughout the water cycle. We demonstrate the framework by “stress-testing” a synthetic UWS case study with an ensemble of scenarios whose parameters are stochastically changing within the UWS simulation timeframe and quantify the uncertainty in the estimation of the system’s resilience.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. Water Supply Infrastructure Planning: Decision-Making Framework to Classify Multiple Uncertainties and Evaluate Flexible Design

2. A resilience assessment method for urban water systems

3. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,2021

4. Global Stressors on Water Quality and Quantity

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3