Differential Localizations of the Transient Receptor Potential Channels TRPV4 and TRPV1 in the Mouse Urinary Bladder

Author:

Yamada Takahiro1,Ugawa Shinya1,Ueda Takashi1,Ishida Yusuke1,Kajita Kenji1,Shimada Shoichi1

Affiliation:

1. Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan

Abstract

We studied the localization and physiological functions of the transient receptor potential (TRP) channels TRPV1 (TRP vanilloid 1) and TRPV4 (TRP vanilloid 4) in the mouse bladder, because both channels are thought to be mechanosensors for bladder distention. RT-PCR specifically amplified TRPV4 transcripts from the urothelial cells, whereas TRPV1 transcripts were barely detectable. ISH experiments showed that TRPV4 transcripts were abundantly expressed in the urothelium, whereas TRPV1 transcripts were not detectable in the urothelial cells. Immunoblotting and IHC studies showed that TRPV4 proteins were mainly localized at the basal plasma membrane domains of the basal urothelial cells. In contrast, TRPV1-immunoreactivities were found not in the urothelial cells but in the nerve fibers that innervate the urinary bladder. In Ca2+-imaging experiments, 4α-phorbol 12,13-didecanoate, a TRPV4 agonist, and hypotonic stimuli induced significant increases in intracellular calcium ion concentration ([Ca2+]i) in isolated urothelial cells, whereas capsaicin, a TRPV1 agonist, showed no marked effect on the cells. These findings raise the possibility that, in mouse urothelial cells, TRPV4 may contribute to the detection of increases in intravesical pressure related to the micturition reflex.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3