Comments on Methods to Suppress Endogenous β-Galactosidase Activity in Mouse Tissues Expressing the LacZ Reporter Gene

Author:

Merkwitz Claudia1,Blaschuk Orest1,Schulz Angela1,Ricken Albert Markus1

Affiliation:

1. Institute of Anatomy (CM, AMR), Institute of Biochemistry (AS), and IFB AdiposityDiseases (AS), Faculty of Medicine, University of Leipzig, Leipzig, Germany, and Division of Urology, Department of Surgery, McGill University, Montreal, Québec, Canada (OB)

Abstract

The Escherichia coli LacZ gene (encoding β-galactosidase) is a widely used reporter for gene regulation analysis in transgenic mice. Determination of β-galactosidase activity is classically performed using 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside/ferri-/ferrocyanide (X-Gal/FeCN) histochemistry. Uncertainty about the origin of the β-galactosidase signal is encountered in tissues containing high levels of endogenous β-galactosidase. Here, we show that reliable results can nevertheless be obtained in these tissues by performing the histochemical reaction under slightly basic pH conditions (pH 8–9). We further demonstrate that in this context, analysis of tissue sections may be advantageous over that of conventional whole-mount tissues because poor dye penetration and remaining tissue acidity are avoided in tissue sections. We also recommend that bacterial debris should always be carefully removed from the luminal surface of gastrointestinal tract specimens unless staining of resident microflora is deliberately used as an internal positive control in the assay. Finally, we show that 6-chloro-3-indolyl-β-d-galactopyranoside with nitrotetrazolium blue chloride works well as an alternative chromogenic substrate for visualizing LacZ reporter gene expression in cryostat sections. Its use in high endogenous β-galactosidase-expressing organs is superior over the use of X-Gal/FeCN at slightly basic pH conditions.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3