Association of segmentation of the epididymal interstitium with segmented tubule function in rats and mice

Author:

Turner TT,Bomgardner D,Jacobs JP,Nguyen QA

Abstract

The epithelium of the epididymal tubule has different biological functions in different regions of the tubule. Each region is further organized into lobules or intra-regional segments surrounded by connective tissue septa (CTS). Epididymal segmentation has received little direct attention, yet there is considerable evidence that expression of mRNA and protein often begins or ends precisely at the CTS border of a segment. How such 'on-off' regulation occurs coincident with the passing of the tubule from one segment to the next is unknown. This study examined the segmentation of epididymides in rats and mice. The average adult Sprague-Dawley rat and C57BL/6 mouse caput, corpus and cauda epididymides has seven, two and four, and three, one and two segments, respectively. The apoptosis response of the caput epididymal epithelium to deprivation of lumicrine factors 24 h after efferent duct ligation in rats and the epididymal expression of a marker protein, beta-galactosidase, in mice were segmented precisely. This validated both at a general response and at a specific protein level that many epididymal functions are regulated within segments. Blue dextran (molecular weight 20000) and erythrocine red (molecular weight 880) dyes infused into the interstitial space of specific segments by micropuncture were retained by the CTS of the segments. In similar micropuncture experiments, [(3)H]H(2)O (molecular weight 18) was able to diffuse into an adjacent segment relatively freely whereas [(14)C]polyethylene glycol (molecular weight 4000) could not. These studies indicate that the interstitium of intra-regional segments is organized into different physiological compartments and that these compartments play a role in regulating the epididymal epithelium.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3