Morphological Characteristics of Neuronal Death After Experimental Subarachnoid Hemorrhage in Mice Using Double Immunoenzymatic Technique

Author:

Nakano Fumi1,Liu Lei1,Kawakita Fumihiro1,Kanamaru Hideki1,Nakatsuka Yoshinari1,Nishikawa Hirofumi1,Okada Takeshi1,Shiba Masato1,Suzuki Hidenori1

Affiliation:

1. Department of Neurosurgery, Graduate School of Medicine, Mie University, Tsu, Japan

Abstract

Subarachnoid hemorrhage (SAH) is a devastating disease. Neuronal death is an important pathophysiology in the acute phase of SAH, but the histopathological features of dying neurons have been poorly studied. Using several staining methods including terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and microtubule-associated protein 2 (MAP-2) double immunolabeling, we investigated the morphological changes of nucleus and cytoskeleton in neurons and sought susceptible areas to neuronal death in filament perforation SAH mice under light microscope. TUNEL and MAP-2 double immunolabeling clearly showed morphological features of shrunken cytoplasm and sometimes curl-like fibers in dying neurons, besides nuclear abnormalities. More dying neurons were detected in the moderate SAH group than in the mild SAH group, and the temporal base cortex was the most susceptible area to neuronal death with deoxyribonucleic acid (DNA) damage among the cerebral cortices and hippocampus at 24 hr after SAH ( p<0.01, ANOVA). Lesser hippocampal neuronal death was observed at 24 hr, but neuronal death was significantly increased in the CA1 region at 7 days after SAH ( p<0.05, unpaired t-test). Using TUNEL and MAP-2 double immunolabeling, morphological features of not only the nucleus but also the cytoplasm in post-SAH neuronal death with DNA damage can be observed in detail under light microscope:

Funder

japan society for the promotion of science

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3