UDP-Glucose/P2Y14 Receptor Signaling Exacerbates Neuronal Apoptosis After Subarachnoid Hemorrhage in Rats

Author:

Kanamaru Hideki12ORCID,Zhu Shiyi1ORCID,Dong Siyuan1ORCID,Takemoto Yushin13ORCID,Huang Lei14,Sherchan Prativa1,Suzuki Hidenori2ORCID,Tang Jiping1ORCID,Zhang John H.145

Affiliation:

1. Departments of Physiology and Pharmacology (H.K., S.Z., S.D., Y.T., L.H., P.S., J.T., J.H.Z.,), Loma Linda University, CA.

2. Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan (H.K., H.S.).

3. Department of Neurosurgery, Kumamoto University School of Medicine, Japan (Y.T.).

4. Neurosurgery, (L.H., J.H.Z.), Loma Linda University, CA.

5. Anesthesiology (J.H.Z.), Loma Linda University, CA.

Abstract

BACKGROUND: Subarachnoid hemorrhage (SAH) is a severe subtype of stroke with poor outcomes. Abnormal glucose metabolism often occurs after SAH, but the strict control of blood glucose levels is not always beneficial. This study aimed to investigate the contribution of uridine diphosphate glucose (UDP-G), an intermediate of glucose/glycogen metabolism, and its receptor P2Y14 (P2Y purinoceptor 14) to SAH pathology and explored the potential targeted treatments in rats. METHODS: A total of 218 Sprague-Dawley male rats were used. SAH was induced by endovascular perforation. Brain expressions of P2Y14, uridine diphosphate glucose (UDP-G), and its converting enzyme UGP2 (UDP-G pyrophosphorylase-2) were evaluated. Exogenous UDP-G or selective P2Y14 inhibitor was administered intranasally at 1 hour after SAH to explore their potential effects. Intranasal Ugp2 or P2ry14 siRNA was delivered 24 hours before SAH for mechanistic evaluation. Primary neuron culture and hemoglobin stimulation were used as in vitro model of SAH. Post-SAH evaluation included liquid chromatography-mass spectrometry measurement of brain endogenous UDP-G level, neurobehavioral assessments, Western blotting, immunohistochemistry, TUNEL staining, and Nissl staining. RESULTS: There was an acute elevation of endogenous brain UDP-G and UGP2 after SAH, and P2Y14 was expressed in neurons. Although P2Y14 inhibitor decreased neurological dysfunction, neuronal apoptosis, and proapoptotic molecules, exogenous UDP-G exacerbated these outcomes at 24 hours after SAH. Early inhibition of P2Y14 preserved long-term neuronal survival in the hippocampus, amygdala, and cortex with improved neurocognition and depressive-like behavior. In addition, in vivo knockdown of Ugp2 - and P2ry14 -reduced neurological deficits and proapoptotic molecules at 24 hours after SAH, and furthermore in vitro knockdown of P2ry14 -reduced apoptosis in hemoglobin stimulated primary neuron. CONCLUSIONS: These findings suggest a detrimental role of brain UDP-G/P2Y14 signaling in SAH, as a part of glucose metabolic pathology at the tissue level. P2Y14 inhibitor 4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid hydrochloride may serve as a potential therapeutic target in treating patients with SAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3