Ultrastructural Localization of Caspase-14 in Human Epidermis

Author:

Alibardi Lorenzo1,Dockal Michael2,Reinisch Christina2,Tschachler Erwin23,Eckhart Leopold2

Affiliation:

1. Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy (LA)

2. Department of Dermatology, Medical University of Vienna, Vienna, Austria (MD, CR, ET, LE)

3. Centre de Recherches et d'Investigations Epidermiques et Sensorielles (CE. R.I.E.S.), Neuilly, France (ET)

Abstract

Caspase-14 has been implicated in the formation of stratum corneum because of its specific expression and activation in terminally differentiating keratinocytes. However, its precise physiological role and its protein substrate are elusive. We studied the ultrastructural localization of caspase-14 in human epidermis to compare its distribution pattern with that of well-characterized differentiation markers. Immunogold cytochemistry confirmed that caspase-14 is nearly absent in basal and spinous layers. In the granular, layer nuclei and keratohyalin granules were labeled with increasing intensity towards the transitional layer. Particularly strong caspase-14 labeling was associated with areas known to be occupied by involucrin and loricrin, whereas F-granules, occupied by profilaggrin/filaggrin, were much less labeled. A high density of gold particles was also present at the forming cornified cell envelope, including desmosomes. In corneocytes, intense labeling was both cytoplasmic and associated with nuclear remnants and corneodesmosomes. These observations will allow focusing efforts of biochemical substrate screening on a subset of proteins localizing to distinct compartments of terminally differentiated keratinocytes.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3