Scaling of Statistical and Physical Electromigration Characteristics in Cu Interconnects

Author:

Gall Martin,Hauschildt Meike,Justison Patrick,Ramakrishna Koneru,Hernandez Richard,Herrick Matthew,Michaelson Lynne,Kawasaki Hisao

Abstract

AbstractEven after the successful introduction of Cu-based metallization, the electromigration (EM) failure risk has remained one of the important reliability concerns for most advanced process technologies. Ever increasing operating current densities and the introduction of low-k materials in the backend process scheme are some of the issues that threaten reliable, long-term operation at elevated temperatures. The main factors requiring attention and careful control are the activation energy related to the dominating diffusion mechanism, the resulting median lifetimes, and the lognormal standard deviation of experimentally acquired failure time distributions. Whereas the origin of the EM activation energy and the behavior of median lifetimes with continuing device scaling are relatively well understood, detailed models explaining the origin and scaling behavior of the lognormal standard deviation are scarce. The statistical behavior of EM-induced void sizes and resulting lifetime distributions appear to be explainable by geometrical variations of the void shapes and the consideration of kinetic aspects of the EM process. Using these models, expected lifetime distributions for future technology nodes can be simulated from current, experimentally obtained void size and lifetime distributions. These simulations have to include geometrical factors of the EM test structures and actual, on-chip interconnects, as well as kinetic aspects of the mass transport process, such as differences in interface diffusivity between the lines. By extrapolating the expected lifetime distributions for future technology nodes from current EM data, it is possible to predict when insertion of new process schemes, such as Cu-alloys and/or metallic coating of the Cu/passivation interface is required.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3