Author:
Tian S.,Morris M.,Morris S. J.,Obradovic B.,Tasch A. F.
Abstract
AbstractWe present for the first time a physically based ion implantation damage model which successfully predicts both the as-implanted impurity range profiles and the damage profiles for a wide range of implant conditions for arsenic, boron, phosphorus, and BF2 implants into single-crystal (100) silicon. In addition, the amorphous layer thicknesses predicted by this damage model for high dose implants are also generally in excellent agreement with experiments. This damage model explicitly simulates the defect production and its subsequent evolution into the experimentally observable profiles for the first time. The microscopic mechanisms for damage evolution are further discussed.
Publisher
Springer Science and Business Media LLC