Analysis of nanoindentation load-displacement loading curves

Author:

Hainsworth S. V.,Chandler H. W.,Page T. F.

Abstract

Nanoindentation load-displacement curves provide a “mechanical fingerprint” of a materials response to contact deformation. Over the last few years, much attention has been focused on understanding the factors controlling the detailed shape of unloading curves so that parameters such as true contact area, Young's modulus, and an indentation hardness number can be derived. When the unloading curve is well behaved (by which we mean approximating to linear behavior, or alternatively, fitting a power-law relationship), then this approach can be very successful. However, when the test volume displays considerable elastic recovery as the load is removed [e.g., for many stiff hard materials and many inhomogeneous systems (e.g., those employing thin hard coatings)], then the unloading curve fits no existing model particularly well. This results in considerable difficulty in obtaining valid mechanical property data for these types of materials. An alternative approach, described here, is to attempt to understand the shapes of nanoindentation loading curve and thus quantitatively model the relationship between Young's modulus, indentation hardness, indenter geometry, and the resultant maximum displacement for a given load. This paper describes the development and refinement of a previous approach by Loubet et al1 originally suggested for a Vickers indenter, but applied here to understand the factors that control the shape of the loading curve during nanoindentation experiments with a pointed, trigonal (Berkovich) indenter. For a range of materials, the relationship P = Kmδ2 was found to describe the indenter displacement, δ, in terms of the applied load P. For each material, Km can be predicted from the Young's modulus (E) and the hardness (H). The result is that if either E or H is known, then the other may be calculated from the experimental loading curve. This approach provides an attractive alternative to finite element modeling and is a tractable approach for those cases where analysis of unloading curves is infeasible.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference17 articles.

1. Mechanical property characterization of thin films using spherical tipped indenters

2. Nanoindentation studies of the chemomechanical effect in sapphire

3. Contact of nominally flat surfaces

4. 13. Hainsworth S. V. , Chandler H. W. , and Page T. F. , unpublished.

5. J. Vac. Sci. Technol.;Sjöström;J Vac Sci Technol. A.,1996

Cited by 298 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3