Mapping the composite nature of clay matrix in mudstones: integrated micromechanics profiling by high-throughput nanoindentation and data analysis

Author:

Shi XiangyunORCID,Misch David,Zak Stanislav,Cordill Megan,Kiener Daniel

Abstract

AbstractMudstones and shales serve as natural barrier rocks in various geoenergy applications. Although many studies have investigated their mechanical properties, characterizing these parameters at the microscale remains challenging due to their fine-grained nature and susceptibility to microstructural damage introduced during sample preparation. This study aims to investigate the micromechanical properties of clay matrix composite in mudstones by combining high-speed nanoindentation mapping and machine learning data analysis. The nanoindentation approach effectively captured the heterogeneity in high-resolution mechanical property maps. Utilizing machine learning-based k-means clustering, the mechanical characteristics of matrix clay, brittle minerals, as well as measurements on grain boundaries and structural discontinuities (e.g., cracks) were successfully distinguished. The classification results were validated through correlation with broad ion beam-scanning electron microscopy images. The resulting average reduced elastic modulus (Er) and hardness (H) values for the clay matrix were determined to be 16.2 ± 6.2 and 0.5 ± 0.5 GPa, respectively, showing consistency across different test settings and indenter tips. Furthermore, the sensitivity of indentation measurements to various factors was investigated, revealing limited sensitivity to indentation depth and tip geometry (when comparing Cube corner and Berkovich tip in a small range of indentation depth variations), but decreased stability at lower loading rates. Box counting and bootstrapping methods were applied to assess the representativeness of parameters determined for the clay matrix. A relatively small dataset (indentation number = 60) is needed to achieve representativeness, while the main challenges is to cover a representative mapping area for clay matrix characterization. Overall, this study demonstrates the feasibility of high-speed nanoindentation mapping combined with data analysis for micromechanical characterization of the clay matrix in mudstones, paving the way for efficient analysis of similar fine-grained sedimentary rocks.

Funder

Austrian Science Fund

Montanuniversität Leoben

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3