Material removal and damage formation mechanisms in grinding silicon nitride

Author:

Xu Hockin H. K.,Jahanmir Said,Ives Lewis K.

Abstract

Surface grinding was performed on two silicon nitrides with different microstructures. The ground surfaces of both materials were observed with scanning electron microscopy (SEM) to consist of areas of microfracture, smeared areas, and areas covered with fine debris particles. It was determined that microfracture is the primary mechanism for material removal. Subsurface grinding damage was revealed by a bonded-interface technique to take the form of median-type cracks extending from the plastic zones. Distributed intergranular microcracks and intragrain twin/slip bands were observed within the plastic zones. The strengths of transverse-ground specimens were measured in four-point flexure. For the silicon nitride with a fine grain size and a mildly rising toughness-curve, grinding damage resulted in a drastic strength degradation compared to polished specimens. In contrast, the silicon nitride with large and elongated grains and a steeply rising toughness curve showed relatively little strength loss. The relationship between the ceramic microstructure and the damage tolerance in abrasive machining is discussed in light of these results.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3