Experimental investigation of damage formation and material removal in ultrasonic assisted grinding of RBSiC

Author:

Liu Jinting,Kang Renke,Dong Zhigang,Zheng Feifei,Zeng Yanfen,Bao YanORCID

Abstract

Abstract Ultrasonic assisted grinding (UAG) has been considered as a prominent processing method of the reaction bonded silicon carbide (RBSiC). To improve the knowledge of UAG process, both conventional grinding (CG) and UAG were used to process the RBSiC for in-depth investigation. Grinding forces, surface topographies, and subsurface damages during CG and UAG were compared. Furtherly, the ground surface was analyzed on aspects of both topographical characteristics and material removal mechanism. The results indicated that the removal of material is mainly achieved by the intersections of cracks initiated from both big SiC particles and mixture area of silicon matrix and small SiC grains. The crack propagation during UAG was more intensified due to the ultrasonic impact, which results in higher efficiency of machining RBSiC.

Funder

China Postdoctoral Science Foundation

National Science and Technology Major Project

Joint Foundation from Equipment Preresearch and Ministry of Education

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3