Author:
Floro J.A.,Thompson C.V.,Carel R.,Bristowe P.D.
Abstract
Epitaxial Grain Growth (EGG) is an orientation-selective process that can occur in polycrystalline thin films on single crystal substrates. EGG is driven by minimization of crystallographically anisotropic free energies. One common driving force for EGG is the reduction of the film/substrate interfacial energy. We have carried out experiments on polycrystalline Ag films on Ni(001) substrates. The orientation dependence of the Ag/Ni interfacial energy has been previously calculated using the embedded atom method. Under some conditions, EGG experiments lead to the (111) orientations calculated to be interface- and surface-energy-minimizing. However, when Ag films are deposited on Ni(001) at low temperature, EGG experiments consistently find that (111) oriented grains are consumed by grains with (001) orientations predicted to have much higher interface and surface energy. The large elastic anisotropy of Ag can account for this discrepancy. Strain energy minimization favors growth of (001) grains and can supersede minimization of interfacial energy if sufficient strain is present and if the film is initially unable to relieve the strain by plastic deformation.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献