Graphitization and particle size analysis of pyrolyzed cobalt phthalocyanine/carbon catalysts for oxygen reduction in fuel cells

Author:

Dignard-Bailey L.,Trudeau M.L.,Joly A.,Schulz R.,Lalande G.,Guay D.,Dodelet J.P.

Abstract

Cobalt phthalocyanine (CoPc) adsorbed on a carbon black support (Vulcan XC-72) and pyrolyzed at various temperatures is a potential catalyst for the reduction of oxygen in solid polymer electrolyte fuel cells. This paper reports the results of the microstructural characterization of β-Co particles that are formed after pyrolysis at temperatures of 700, 900, and 1050 °C. Transmission electron microscopy (TEM) indicated that (i) for a pyrolysis temperature of 700 °C, the size distribution of the Co particles is bell-shaped with an average value of 4 nm and mean deviation of 1 nm; (ii) for a pyrolysis temperature of 900 °C, the Co particle size distribution skews toward larger particle sizes. The most probable particle size is about 6 nm, and the average particle size is 13 nm. By comparison with the TEM results, the particle size estimated from a spectroscopic method like x-ray absorption is underestimated, while from x-ray diffraction is overestimated. The TEM images show that Co particles act as heterogeneous nucleation sites for the graphitization of amorphous carbon. It is shown that (i), at least for pyrolysis temperature of 900 °C and above, most of the β-Co particles are surrounded by a shell of graphitic carbon layers that appears to protect the particles from corrosion in acidic media; (ii) for pyrolysis temperature of 1050 °C, graphite strings also appear throughout the amorphous carbon support in areas where Co particles are not detected. This behavior was not observed after pyrolysis of as-received carbon support at 1050 °C. These results allow for a better understanding of the behavior of the pyrolyzed catalysts immersed in an acidic solution or in a solid polymer fuel cell.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3