Incorporation of Thallium in IN1−xTIxP Grown by Metal Organic Molecular Beam Epitaxy

Author:

Antonell M.J.,Abernathy C.R.

Abstract

ABSTRACTInxTll−xP has been proposed as a potential narrow bandgap material for the fabrication of IR detectors. 1 It is expected to exist in a zincblende structure with a lattice constant approximately 2% larger than aInP for x=0. In this paper we will discuss attempts to grow this alloy on InP using various combinations of elemental and gaseous sources including In, Tl, trimethylindium (TMI), triethylindium (TEI) and phosphine. The sticking coefficient of Tl was found to decrease rapidly for temperatures above 350°C, mandating the use of low temperatures. Attempts to grow TIP resulted in the formation of Tl droplets which oxidized rapidly upon removal from the vacuum system. Auger analysis of the surface shows the oxide composition to be Tl2O, indicative of a monovalent Tl oxidation state. InTlP grown under similar conditions shows an initial tendency to form structural defects, as observed by cross-sectional TEM, suggesting lattice mismatch due to incorporation of small amounts of Tl. As the Tl concentration at the growth surface is increased, a two-phase material is obtained consisting of Tl-rich droplets and InP. In addition, Auger depth profiling shows clear evidence of Tl segregation.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

1. Surface chemical kinetics during the growth of GaAs by chemical beam epitaxy

2. 2. Krishnamurthy S. , Chen A.-B. , and Sher A. , submitted to Appl. Phys. Lett., 1994

3. Chemical beam epitaxy of indium phosphide

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3