Boron Segregation and Electrical Properties in Polycrystalline SiGeC

Author:

Stewart E. J.,Carroll M. S.,Sturm J.C.

Abstract

ABSTRACTPreviously, it has been reported that PMOS capacitors with heavily boron-doped polycrystalline SiGeC gates are less susceptible to boron penetration than those with poly Si gates [1]. Boron appears to accumulate in the poly SiGeC layers during anneals, reducing boron outdiffusion from the gate despite high boron levels in the poly SiGeC at the gate/oxide interface. In this abstract, we report clear evidence of strong boron segregation to polycrystalline SiGeC layers from poly Si, with boron concentration in poly SiGeC (Ge=25%, C=1.5%) increasing to four times that of adjacent poly Si layers. A separate experiment confirms that this result is not due to any SIMS artifacts. Electrical measurements of heavily in-situ doped single layer samples show that the conductivity of poly SiGeC is similar to poly Si and remains roughly constant with annealing at 800°C. However, in a two-layer sample where the poly SiGeC is initially lightly doped and subsequently heavily doped by diffusion by from an adjacent poly Si layer, conductivity appears lower than in poly Si.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3