Microstructural characterization of thick YBa2Cu3O7−δ films on improved rolling-assisted biaxially textured substrates

Author:

Leonard K. J.,Kang S.,Goyal A.,Yarborough K. A.,Kroeger D. M.

Abstract

The microstructural changes associated with the reduced dependence of critical current density (Jc) versus thickness of thick, epitaxial YBa2Cu3O7–δ (YBCO) films on rolling-assisted biaxially textured substrates (RABiTS) were investigated. Pulsed laser deposited YBCO films varying in thickness from 1.0 to 6.4 ?m on RABiTS with an architecture of Ni–3 at.% W/Y2O3/yttrium-stabilized-zirconia/CeO2/YBCO were prepared for cross-sectional transmission electron microscopy studies. Dramatic improvements in physical properties and microstructural quality were observed resulting from the use of Ni–3 at.% W substrates, which provided a sharper texture over earlier Ni substrates, and replacement of CeO2 with Y2O3 as the seed layer within the buffers. The YBCO films showed exceptional orientation up to 6.4 μm thickness, with no misoriented grains or dead layers observed and only limited reaction between the YBCO and CeO2 cap layer. The high quality of the films was also attributed in part to the formation of a tungsten oxide layer forming at the top of the Ni–3% W substrate, limiting the growth of deleterious NiO into the conductor.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3