Advances in SiGeSn technology

Author:

Soref Richard,Kouvetakis John,Tolle John,Menendez Jose,D’Costa Vijay

Abstract

We recently reported the chemical vapor deposition growth of binary Ge1–ySny and ternary Ge1–ySixSny alloys directly on Si wafers using SnD4, Ge2H6 (di-germane), SiH3GeH3, and (GeH3)2SiH2 sources. Ge1–ySny is an intriguing infrared (IR) material that undergoes an indirect-to-direct band-gap transition for y < 0.1. In addition, we have found that Ge1–ySny layers have ideal properties as templates for the subsequent deposition of other semiconductors: (i) they are strain-relaxed and have low threading-defect densities (105 cm−2) even for films thinner than 1 μm; (ii) their low growth temperatures between 250 and 350 °C are compatible with selective growth, and the films possess the necessary thermal stability for conventional semiconductor processing (up to 750 °C, depending on composition); (iii) they exhibit tunable lattice constants between 5.65 Å and at least 5.8 Å, matching InGaAs and related III-V systems; (iv) their surfaces are extremely flat; (v) they grow selectively on Si and not on SiO2; and (vi) the film surface can be prepared by simple chemical cleaning for subsequent ex situ epitaxy. The incorporation of Sn lowers the absorption edges of Ge. Therefore, Ge1–ySny is attractive for detector and photovoltaic applications that require band gaps lower than that of Ge. Spectroscopic ellipsometry and photoreflectance experiments show that the direct band gap is halved for as little as y = 0.15. Studies of a Ge0.98Sn0.02 sample yield an absorption coefficient of 3500 cm−1 at 1675 nm (0.74 eV). Thus, IR detectors based on Ge0.98Sn0.02 could easily cover the L-(1565–1625 nm) and C-(1530–1565 nm) telecomm bands. Photoluminescence studies show band-gap emission on thin GeSn layers sandwiched between higher band-gap SiGeSn barriers. We have made advances in p- and n-doping of GeSn and present results on electrical characterizations. Hall measurements reveal mobilities as high as of 600 cm2/V-s and background p-dopant concentrations in the 1016 cm−3 range for samples with nominal composition and thickness of Ge0.98Sn0.02 and ∼500 nm, respectively. GeSn also has application in band-to-band laser heterodiodes. The ternary system Ge1–x–ySixSny grows on Ge1–ySny-buffered Si. It represents the first practical group IV ternary alloy, because C can only be incorporated in minute amounts to the Ge–Si network. The most significant feature of Ge1–x–ySixSny is the possibility of independent adjustment of the lattice constant and band gap. For the same value of the lattice constant, one can obtain band gaps differing by >0.2 eV, even if the Sn concentration is limited to the range y < 0.2. This property can be used to develop a variety of novel devices, from multicolor detectors to multiple-junction photovoltaic cells. A linear interpolation of band-gap lattice constants between Si, Ge, and α–Sn shows that it is possible to obtain SiGeSn with a band gap and a lattice constant larger than that of Ge. We shall use this feature to make a tensile-strained Ge-on-SiGeSn telecomm detector with improved performance. To date, record high tensile strain (0.40%) has been achieved in Ge layers grown on GeSn-buffered Si where the strain is systematically tuned by adjusting the lattice constant in the buffer. A tensile-strain-induced direct gap of Ge can be used also for laser diodes and electroptical modulators.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3